1977年,在上海建成并投运了我国第一条31kV,4.65MW,地下电缆长8.6km的直流输电试验线年,在浙江舟山投运了±1O0kV,100MW,全长54km的高压直流工程,这是我国第一条自行设计、施工、全部设备国产化的线年投运的葛洲坝至上海的电压±500kV,传输功率1200MW,输送距离约1045km的高压直流输电线路是我国当时顶级规模的直流工程。它的建成标志着我国高压直流输电技术上了一个台阶,为今后我国直流输电的建设和发展积累了丰富的经验。2001年天生桥至广州直流输电系统投运,其额定工作电压±500kV,容量1800MW,线km。南方电网以它为系统联络线,形成了我国第一个高压大容量交直流并联运行电力系统。
(1)直流输电换流站比交流变电站的设备多、结构较为复杂、造价高、损耗大、运行的成本高、可靠性也较差。通常交流变电站的主要设备是变压器和断路器,而直流换流站除换流变压器和相应的断路器以外,还有换流器、平波电抗器、交流滤波器、直流滤波器、无功补偿设备和很多类型的交流和直流避雷器等。因此,换流站的造价比同样规模的交流变电站的造价要高出数倍。由于设备多,换流站的损耗和运行的成本也相应增加,同时换流站的运行和维护也较复杂,对运行人员的要求也较高。
(1)1954年以前,试验阶段。由于50年代初交流系统高压输电处于发展的黄金时代,加上当时技术水平的限制,直流输电发展缓慢并且不受重视。
(2)1954年至1972年,发展阶段。1954年瑞典建成世界上第一条工业直流输电线路,标志着直流输电进入实用阶段。在这一阶段,直流输电设备的制造技术、实施工程质量、运行水平都有了很大的提高。直流输电技术应用到水下输电,不同额定频率交流系统互连,远距离大功率输电等多个方面。
第六,接线方式灵活,提高了运行可靠性。直流输电接线方式有双极、单极大地回线、单极双线并联大地回线和金属回线等,可按要选择。一般,正常运行采用双极方式,一根导线是正极,另一根是负极,中性点接地。当一根导线或一极出现故障时,另一极的另一根导线能以大地作回路,继续输送一半或全部功率;若设备绝缘薄弱或线路沿线某段雾大,还可降压运行,来提升了运行的可靠性。
双极线路方式有两根不同极性的导线,即一正一负。可具有大地回路或中性回路,分述如下:
1-换流变压器;2-换流器;3-平波电抗器;4-直流输电线单极金属回线方式接线图
此外,当双极直流输电工程在单极运行时,还可以接成双导线-换流器;3-平波电抗器;4-直流输电线双导线并联大地回线方式接线图
第二,适宜于远距离输电。高压交流输电线路单位长度的分布电容较大,为避免输电线过负荷,其输送的交流容量远低于自然功率。同时,交流输电线路末端或中间因电容效应而使电压升高,需在线路中安装并联电抗器补偿,以确保其正常运行。而采用直流输电就无此弊端。
第三,通过直流输电线路连接的两端交流输电系统不需要同步运行,并且输电距离不受电力系统同步运行稳定性的限制。在电力系统中的所有发电机都要保持同步运行。如果输送功率过大或输电距离过长,线路两端功角差过大,就不能保证系统运行的稳定性和可靠性。所以为增加交流输电能力,常需要采取一些措施如增设串补、静补、调相机和开关站等。这样势必增加了费用,提高了交流输电线路的成本。而直流输电,由于不存在电抗,也就不存在系统稳定的问题。同时,由于直流输电与系统频率、相位无关,故直流输电可连接两个频率不相同的交流系统。这样既能够获得联网的技术经济效益,又能够尽可能的防止两互联电网间事故的相互影响,保证系统安全稳定运行。
第五,限制系统的短路电流。用交流线路互联的电力系统,电力短路电流随系统容量的增加而增大。可能会超出部分原有断路器的遮断容量。而利用直流线路连接的两个交流系统,由于直流联络线的电流能按定值迅速加以控制,因此两个系统各自的短路容量不会因为互联而有明显的增大。此外,当直流线路发生短路故障时,同样也能够最终靠整流器的调节来限制短路电流。在直流线路电容放电电流消失之后,短路电流的峰值一般可控制到线倍。
电能的输送最早是通过直流来实现的,但后来由于多相交流电路原理的逐步完善,出现了交流发电机、变压器和感应电动机,使得交流电的发电、变压、输送、分配及使用变得更加方便、经济和安全可靠。这样交流电几乎完全替代了直流电,并发展成今日规模巨大的电力系统。但是随着高电压、大容量晶闸管制造水平的提高及控制理论和技术的发展,直流输电技术慢慢的被受到重视。尤其是在大功率、远距离、海底电缆送电和交流系统间非同步互联等方面,直流输电相对交流输电有着明显的优势。不同于传统的交流输电,直流输电系统具有如下优点:
目前我国对高压直流输电的应用只能算是试验性阶段,与国外发达国家相比,还有很大差距。随着我们国家各大区电力系统的发展,高压直流输电在形成全国互联统一网中的优越性将一天比一天突出。因此,加速高压直流输电技术的研究和工程建设是一项非常紧迫的任务。
第一,长距离输电线路建设费用低。对于架空线路,常见三相交流输电线路需要三根导线,而单极直流输电只需两根导线。当用大地或海水作回路时,仅需一根导线,架空线的杆塔载荷小,线路所需走廊较窄。在输送相同功率的条件下,直流输电可节省大量的有色金属、钢材、绝缘材料等。对于电缆线路,直流电缆与交流电缆相比,其投资和运行的成本都更为经济。
(5)直流断路器由于没电流过零点可通过,灭弧问题难以解决,给制造带来困难。国外虽然对直流断路器进行了大量的研究和试制,但是到目前为止仍然没有满意的产品提供给工程使用,使多端直流输电工程发展缓慢。近年来,利用直流输电的快速控制,在工程上已可以解决多端直流输电的故障处理等问题,但其控制管理系统相当复杂,仍需要在实际工程中进行考验和改进。当采用新型可关断半导体器件进行换流时,直流断路器的功能将由换流器来承担,这一问题将得到解决[4]。
直流输电通过可控硅换流器能容易的快速调整有功功率和实现潮流翻转这样不仅在正常运行时能保证稳定的输出而且在事故情况下可以由正常的交流系统向另一端事故系统来进行紧急支援来提升系统的稳定性
电力技术的发展是从直流输电技术是从20世纪50年代开始得到应用,并且在近年来快速地发展的一项新技术。经过半个世纪的发展,高压直流输电技术的应用取得了长足的进步。据不完全统计,目前包括在建工程在内,世界上已有近百个HVDC工程,遍布5大洲20多个国家。它与交流输电相互配合,构成现代电力传输系统。直流输电的发展可大致分为下面三个阶段:
(4)直流输电利用大地(或海水)为回路而带来的一些技术问题。如接地极附近地下(或海水中)的直流电流对金属构件、管道、电缆等埋设物的电腐蚀问题;地中直流电流通过中性点接地变压器使变压器饱和所引起的问题;对通信系统和航海磁性罗盘的干扰等。对于每项具体的直流输电工程,在工程设计时,对以上问题一定要进行充分的研究,并采取对应的技术措施。
单极直流输电系统能采用正极性和负极性。换流站出线端对地电位为正的称为正极,为负的称为负极,与正极或负极相连的输电导线称为正极导线或负极导线,也可以称为正极线路或负极线路。单极系统的接线方式有单极大地(海水)回线方式和单极金属回线)单机极大连线方式:单极连接是用一根架空导线或电缆线,以大地或海水作为返回线路组成直流输电系统。如图2.l所示这种方式。由于正常运行时电流需流经大地或海水,因此要注意接地电极的材料、埋设方法和对地下埋设物的腐蚀以及对地下通讯线路、航海罗盘的影响等问题,通常用正极接地方式较多[6]。
第四,调节快速、运行可靠。直流输电通过可控硅换流器能容易的快速调整有功功率和实现“潮流翻转”,这样不仅在正常运行时能保证稳定的输出,而且在事故情况下,可以由正常的交流系统向另一端事故系统来进行紧急支援,来提升系统的稳定性:或者在交直流线路并列运行时,当交流线因扰动引起输送功率变换时,可迅速调节直流输电的功率,以抵消交流输电系统因扰动引起的功率变换量,来提升系统运行的可靠性。
以上五点是直流输电的主要应用。此外,直流输电的应用场景范围广泛,还可用于磁流体发电、太阳能电池、燃料电池和热核聚变直接发电等多种新型发电方式的配套和超导输电等方面[5]。
高压输电系统的接线方式可分为三种方式:单极连接,双极连接和背靠背接线)换流器对交流侧来说,除了是一个负荷(在整流站)或电源(在你逆变站)以外,它还是一个谐波电流源。它畸变交流电流波形,向交流系统发出一系列的高次谐波电流,同时也畸变了交流电压波形。为减少流入交流系统的谐波电流,保证换流站交流母线电压的畸变率在允许的范围内,必须装设交流滤波器。另外,换流器对直流侧来说除了是一个电源(在整流站)或负荷(在逆变站)以外它还是一个谐波电压源。它畸变直流电压波形、向直流侧发出一系列的谐波电压,在直流线路上产生谐波电流。为了能够更好的保证直流线路上的谐波电流在允许的范围内,在直流侧必须装设平波电抗器和直流滤波器。交、直流滤波器使换流站的造价、占地面积和运行的成本均大幅度提高。同时也降低了换流站的运行可靠性。
2002~2008年,又有三峡-广东、贵州-广东Ⅰ、灵宝背靠背、三峡-上海、贵州-广东Ⅱ和高龄背靠背6项直流输电工程投入运行[2][3]。2020年前计划建设的直流输电工程:
1-换流变压器;2-换流器;3-平波电抗器;4-直流输电线 单极大地回线)单极金属回线方式:单极金属回线方式是利用两根导线构成直流侧的单极回路,见图2.2,其中一根低绝缘的导线(也称金属返回线)用来代替单极大地回线中的地回线。这种方式避免了电流从大地或海水中流过,又把某一导线的电位钳位到零。其缺点是当负荷电流在流过导线时,要产生不小的电压降,所以仍要考虑适当的绝缘强度。这种方式大多用于无法采用大地或海水作为回路以及作为双极方式的过渡方案。
(3)1972年至今,加快速度进行发展阶段。1972年晶闸管阀换流器第一次在工程中应用,取代了汞弧阀,使直流输电技术提高了一大步。直流输电技术获得了普遍的重视[1]。
我国对高压直流输电的研究起步较晚,从60年代初开始,并由于种种原因中断了一段时间。70年代前半期才又先后在浙江、上海、北京、西安等地恢复实验研究工作。
第七,可以分段建设,分期投资。直流输电可方便地进行分期建设和增容扩建,有利于发挥投资效益。双极直流输电工程科按极来分期建设,先建一个极单极运行,后再建另一个极。也可以每极选择两组基本换流单元(串联接线或并联接线),第一期先建一组(为输送容量的1/4)单极运行;第二期再建一组(为输送容量的1/2)双极运行;第三期再增加一组,可双极不对称运行(为输送容量的3/4),当两组换流单元为串联接线时,两极的电压不对称,为并联接线时,则两极的电流不对称;第四期则整个双极工程完全建成。 直流输电与交流输电相比,也有如下缺点:
根据以上分析并结合本论文的思想,现在将高压直流输电系统的主要应用述述如下:
(2)直流电缆送电。由于交流电缆存在比较大的电容电流,海底电缆长度超过等价距离时,采用直流输电无论是经济上还是技术上都较为合理。
(4)现有交流输电线)晶闸管换流器在进行换流时需要消耗大量的无功功率(占直流输送功率的40%~60%),每个换流站均需装设无功补偿设备;当交流滤波器所提供的无功功率不能够满足无功补偿的要求时,还需静电电容器;当换流站接于弱交流系统时,为提高系统动态电压的稳定性和改善换相条件,有时还需要装设同步调相机或静止无功补偿装置,这同样要增加换流站的投资和运行的成本。当采用新型可关断半导体器件或电容换相换流器时,无功补偿问题将会得到解决。